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Preface

Over the past 30 years digital control of industrial processes has changed from being
the exception to the commonplace. Each succeeding year sees an increase in the
range of applications and each advance in hardware design widens the potential
application areas. Microprocessors are now a normal component employed in a
wide range of electronic systems. :

Computers in one form or another now form an integral part of most real-time
control systems; such computers ar¢ generally referred to as embedded real-time
compuiers and an understanding of how to design and build systems containing
embedded computers is an essential requirement for a systems engineer. The
knowledge required covers both hardware and software design and construction,
and of the two the software engineering is the most difficult and least understood.
The difficulties of specifying, designing and building real-time software have led in
recent years to intensive work on development methodologies and one of the major
objectives of this book is to introduce the reader to the fundamental ideas
underlying these methodologies.

Traditional computing courses for engineers have typically emphasised the
hardware and programming language aspects of using computers. An understanding
of the basic principles of operation of computer hardware and of programming
languages is of course important; however, these are details with respect to the
overall system design problem. Also in the past it has frequently been assumed that
real-time control software will be written in an assembly language. It is of course
true that for many engineering applications use of assembly languages, and
languages such as FORTH and real-time BASIC, are legitimate, economical means
of producing a viable solution. However, for large-scale, complex and safety-critical
systems such approaches are no longer adequate and in this book [ attempt to cover
some of the important and fundamental ideas underlying a software engineering
approach to specifying, designing and building real-time software for computer
control applications.

The book is intended for final-year undergraduate students and practising
engineers, and is also suitable as a text for computer science students requiring an
introduction to real-time software from an application viewpoint as opposed to an
operating system viewpoint. It assumes that the reader has some familiarity with at

13



14 Preface

- least one high-level programming language, with basic ideas about computer
hardware and an understanding of simple feedback controi concepts. It does not
require familiarity with control design techniques. Examples in the text are given
using Modula-2 and should be easily followed by anyone familiar with Pascal.

In Chapters 1 and 2 I introduce basic concepts relating to real-time systems and
their characteristics and provide an overview of computer control applications.
Chapter 3 provides a brief summary of the important hardware building blocks for
computers used for control. Chapter 4 introduces some of the practical problems
of implementing control algorithms. I use the simple and widely used PID
(Proportional + Integral + Derivative) controlier as an example and I explain its
operation in detail. The section of this chapter which uses z-transform notation and
deals with the implementation of controllers designed using discrete control
techniques can be omitted by readers who have no background in control systems.
In the final part of Chapter 4, ! introduce in general terms how to deal with systems
which involve more than just the control algorithm.

Chapter 5 on real-time languages.and Chapter 6 on operating systems and
concurrency provide basic information about two essential tools that will be
required by the real-time system builder. In Chapters 7, 8 and 9 I deal with the
methodologies that have been developed in recent years to help in the specification,
design and construction of real-time software and real-time systems. I concentrate
mainly on two methodologies, MASCOT and the Hatley & Pirbhai variant of the
Yourdon method. The standard methodologies provide very little guidance for the
actual implementation of the software design and in Chapter 10 I describe some of
the implementation problems and possible approaches to solving them. The final
chapter deals with the vital topic of building dependable software.

Many people assisted me in producing the first edition of this book: colleagues
in the Department of Automatic Control and Systems Engineering at the University
of Sheffield, in particular Steve White. In preparing this second edition I have
received much useful comment from Les Woolliscroft and from two reviewers.

Stuart Bennett
Sheffield, UK
April 1993



