Contents

Preface

1 Introduction to Real-time Systems

— e
P b B

1.7

Historica! Background

Elements of a Computer Contro! System
Real-time Systems — Definition
Classification of Real-time Systems

1.4.1 Clock-based Tasks (cyclic, periodic)
1.4.2 Event-based Tasks (aperiodic)
1.4.3 Interactive Systems

Time Constraints

Classitication of Programs

1.6.1 Sequential

1.6.2 Multi-tasking

1.6.3 Real-time

Summary

Exercises

2 Concepts of Computer Control

2.1

2.2
2.3

2.4
2.5

Introduction

2.1.1 Batch

2.1.2 Continuous

2.1.3 Laboratory Systems

2.1.4 General Embedded Systems
Sequence Control

Loop Control (Direct Digital Control)
2.3.1 PID Control

2.3.2 DDC Applications

2.3.3 Adaptive Control
Supervisory Control

Centralised Computer Control

13

15

15
18
24
26
27
27
28
28
31
32
32
33
34
35

36

36
37
37
38
38
39

45
50

53
35

2.6
2.7
2.8
2.9
2.10
2.11

Hierarchical Systems

Distributed Systems

Human-Computer Interface (HCI)

The Control Engineer

Economics and Benefits of Computer Control Systems
Summary

Exercises

Computer Hardware Requirements for Real-time Applications

3.1
3.2

33
34

35

3.6

3.7

3.8
19

Introduction

General Purpose Computer

3.2.1 Central Processing Unit

3.2.2 Storage

3.2.3 Input and Output

3.2.4 Bus Structure

Single-chip Microcomputers and Microcontrollers

Specialised Processors

3.4.1 Parallel Computers

3.4.2 Digital Signal Processors

Process-related Interfaces

1.5.1 Digital Signal Interfaces

3.5.2 Pulse Interfaces

3.5.3 Analog Interfaces

3.5.4 Real-time Clock

Data Transfer Techniques

316.1 Polling

3.6.2 Interrupts

3.6.3 Direct Memory Access

3.6.4 Comparison of Data Transfer Techniques

Communications

3.7.1 Asynchronous and Synchronous Transmission
Techniques

3.7.2 Local- and Wide-area Networks

Standard Interfaces

Summary

Exercises

DDC Algorithms and Their Implementation

4.1
4.2
4.3

Introduction

Implementation of the Basic PID Algorithm
Synchronisation of the Control Loop

4.3.1 Polling

4.3.2 Ballast Code

Contents

57
61
63
64
65
66
67

68

68
68
70
71
72
72
73
74
74
76
76
77
81
83
85
86
87
88
101
101
102

103
106
109
111
112

115

115
17
118
119
120

Contents

4.4

4.5

4.6
4.7
4.8

4.9

4.10

4.11

4.3.3 External Interrupt

4.3.4 Real-time Clock

Bumpless Transfer

4.4.1 Method 1 — Preset Change-over Value

4.4.2 Method 2 — Tracking of Operator Setting

4.4.3 Method 3 — Velocity Algorithm

4.44 Comparison of Position and Velocity Algorithms
Saturation and Integral Action Wind-up

4.5.1 Fixed Limits

4,5.2 Stop Summation

4.5.3 Integral Subtraction

4.5.4 Velocity Algorithm

4.5.5 Analytical Approach

Tuning

Choice of Sampling Interval

Plant Input and Qutput

4.8.1 Noise

4.8.2 Actuator Control

4.8.3 Computational Delay

Improved Forms of Algorithm for Integral and Derivative
Calculation

Implementation of Controlier Designs Based on Plant Models
4.10.1 The PID Controller in Z-transform Form

4.10.2 Direct Method 1

4.10.3 Direct Method 2

4.10.4 Cascade Realisation

4.10.5 Parallel Realisation

4.10.6 Discretisation of Cont.nuous Controilers
Summary

Exercises

5 Languages for Real-time Applications

5.1

Introduction

5.1.1 Security
5.1.2 Readability
5.1.3 Flexibility
5.1.4 Simplicity
5.1.5 Portability

5.1.6 Efficiency

Syntax Layout and Readability

Declaration and Initialisation of Variables and Constants
5.3.1 Declarations

5.3.2 Initialisation

120
121
126
127
127
127
128
129
131
152
133
133
135
137
139
140
140
142
143

144
145
146
148
149
149
150
151
151
152

155

155
157
158
158
159
159
159
160
163
163
164

5.4

5.5
5.6

57
5.8
5.9
5.10
3.1
5.12
5.13
5.14
3.15

5.16

5.3.3 Constants

Modularity and Variables

5.4.1 Scope and Visibility

5.4.2 Global and Local Variables
5.43 Controi of Visibility and Scope
5.4.4 Modularity

Compilation of Modular Programs
Data Types

5.6.1 Sub-range Types

5.6.2 Derived Types

5.6.3 Structured Types

' 5.6.4 Pointers

Control Structures

Exception Handling

Low-level Facilities

Coroutines

Interrupts and Device Handling
Concurrency

Run-time Support

Overview of Real-time Languages
Application-oriented Software
5.15.1 Table-driven Approach
5.15.2 Block-structured Software
5.15.3 Application Languages
CUTLASS

5.16.1 General Features of CUTLASS
5.16,.2 Data Typing and Bad Data
5.16.3 Language Subsets

5.16.4 Scope and Visibility
5.16.5 Summary

A Note on BASIC

Summary

Exercises

Operating Systems

6.1
6.2
6.3

6.4

Introduction

Real-time Multi-tasking Operating Systems

Scheduling Strategies
6.3.1 Cyclic

6.3.2 Pre-emptive
Priority Structures
6.4.1 Interrupt Level
6.4.2 Clock Level

Contents

165
166
166
167
169
169
171
172
173
174
175
176
178
181
186
190
191
193
194
195
196
198
200
202
203
203
206
207
207
209
209
211
211

212

212
215
219
219
219
221
221
223

Contents

6.5

6.6

6.7
6.8

6.9

6.12

6.13
6.14
6.15
6.16

7.4
7.5
7.6
7.7

6.4.3 Cyclic Tasks

6.4.4 Delay Tasks

6.4.5 Base Level

Task Management

6.5.1 Task States

6.5.2 Task Descriptor

Scheduler and Real-time Clock Interrupt Handler
6.6.1 System Commands Which Change Task Status
6.6.2 Dispatcher — Search for Work

Memory Management

Code Sharing

6.8.1 Serially Reusable Code

6.8.2 Re-entrant Code .

Resource Controt: an Example of an Input/Output Subsystem
(105%)

6.9.1 Example of an 1088

6.9.2 Output to Printing Devices

6.9.1 Device Queues and Priorities

Task Co-operation and Communication

Mutual Exclusion

6.11.1 Semaphore

6.11.2 The Monitor

6.11.3 Intertask Communication

6.11.4 Task Synchronisation Without Data Transfer
Data Transfer {the Producer—Consumer Problem)
6.12.1 Data Transfer Without Synchronisation
6.12.2 Synchronisation With Data Transfer
Liveness

Minimum Operating System Kernel

Example of Creating an RTOS Based on a Modula-2 Kernel
Summary

Exercises

Design of Real-time Systems — General Introduction

Introduction

Specification Document
Preliminary Design

7.3.1 Hardware Design

7.3.2 Software Design
Single-program Approach
Foreground{Background System
Multi-tasking Approach

Mutual Exclusion

223
225
226
227
£27
228
230
230

- 231

236
241
242
242

244
248
250
252
254
254
256
260
261
261
262
262
269
269
270
270
276
277

278

278
284
286
286
287
288
290
296
297

10

Contsnts

7.7.1 Condition Flags

7.7.2 Semaphores

7.7.3 Notes on Using Semaphores
7.8 Monitors
7.9 Rendezvous
7.10 Summary

Exercises

Real-time System Development Methodologies — 1

B.1 Introduction
8.2 Yourdon Methodology
8.3 Requirements Definition for Drying Oven
8.4 Ward and Mellor Method
8.4.1 Building the Essential Model ~ the Environmental
Model ‘
8.4.2 Building the Essential Model ~ the Behavioural Model
8.4.3 Behavioural Model — Rules and Conventions
8.4.4 Process Specifications
8.4.5 Control Specifications
8.4.6 Checking the Essential Model
8.4.7 Building the Implementation Model
8.4.8 Enhancing the Model
B.4.9 Allocation of Resources
8.5 Hatley and Pirbhai Method
8.5.1 Requirements Model
8.5.2 Architecture Model
8.6 Comments on the Yourdon Methodologies
8.7 Summary

Real-time System Development Methodologies - 2

9.1 MASCOT

9.2 Basic Features of MASCOT
9.2.1 Simple Example
9.2.2 Communication Methods

9.3 General Design Approach

9.4 Textual Representations of MASCOT Designs

9.5 Other Features of MASCOT
9.5.1 Constants
9.5.2 Direct Data Visibility
9.5.3 Qualifiers

9.6 Development Facilities

9.7 The MASCOT Kernel

9.8 Summary of MASCOT

299
303
309
310
313
318
319

320

320
324
324
327

328
331
334
337
337
341
34
341
343
345
345
349
350
352

353

353
354
355
356
356
359
362
362
362
362
363
364
365

Contents

10

11

9.9 Formal Methods _
9.10 The PAISLey System for Real-time Software Development
Method
9.10.1 A Simple System
9.10.2 Exchange Functions
9.10.3 Timing Constraints
9.11 PAISLey Summary
9.12 Summary

Design Analysis

10.1 Introduction
10.2 Petri Nets
10.2.1 Basic Ideas .
10.2.2 Modelling Mutual Exclusion
10.3 Analysing Petri Nets
10.3.1 Reachability Tree
10.4 Scheduling
10.5 General Approaches to the Scheduling Problem
10.6 On-line Scheduling — Independent Tasks
10.6.1 Schedulability
10.6.2 Scheduling Algorithms — Pre-emplive, Priority Based
10.6.3 Scheduling Algorithms — Other Types

-10.7 Pre-run-time Scheduling

10.8 Scheduling — Including Task Synchronisation
10.9 Summary
Exercises

Dependability, Fault Detection and Fault Tolerance

11.1 Introduction
11.2 Use of Redundancy
1.3 Fault Tolerance in Mixed Hardware—Software Systems
11.3.1 Mechanisms and Measures
11.3.2 Exceptions
11.4 Fault Detection Measures
11.4.1 Replication Checks
11.4.2 Expected Value Methods
11.4.3 Watch-dog Timers
11.4.4 Reversal Checks
11.4.5 Parity and Error Coding Checks
11.4.6 Structural Checks
11.4.7 Diagnostic Checks
Fault Detection Mechanisms
Damage Containment and Assessment

11

366

366
367
371
3N
372
375

376

376
376
377
380
384
386
387
389
389
390
393
394
395
396
397
398

399

399
399
402
403
404
404

405

407
407
407
408
408
409

12 - Contents

11.7 Provision of Fault Tolerance 409
11.7.1 Redundancy 409

11.7.2 Deadline Mechanisms 410

11.7.3 Bad Data Marking : 411

11.7.4 Recovery Measures — Check Points 412

11.8 Summary 413
Bibliography 414

Index 425

Preface

Over the past 30 years digital control of industrial processes has changed from being
the exception to the commonplace. Each succeeding year sees an increase in the
range of applications and each advance in hardware design widens the potential
application areas. Microprocessors are now a normal component employed in a
wide range of electronic systems. :

Computers in one form or another now form an integral part of most real-time
control systems; such computers ar¢ generally referred to as embedded real-time
compuiers and an understanding of how to design and build systems containing
embedded computers is an essential requirement for a systems engineer. The
knowledge required covers both hardware and software design and construction,
and of the two the software engineering is the most difficult and least understood.
The difficulties of specifying, designing and building real-time software have led in
recent years to intensive work on development methodologies and one of the major
objectives of this book is to introduce the reader to the fundamental ideas
underlying these methodologies.

Traditional computing courses for engineers have typically emphasised the
hardware and programming language aspects of using computers. An understanding
of the basic principles of operation of computer hardware and of programming
languages is of course important; however, these are details with respect to the
overall system design problem. Also in the past it has frequently been assumed that
real-time control software will be written in an assembly language. It is of course
true that for many engineering applications use of assembly languages, and
languages such as FORTH and real-time BASIC, are legitimate, economical means
of producing a viable solution. However, for large-scale, complex and safety-critical
systems such approaches are no longer adequate and in this book [attempt to cover
some of the important and fundamental ideas underlying a software engineering
approach to specifying, designing and building real-time software for computer
control applications.

The book is intended for final-year undergraduate students and practising
engineers, and is also suitable as a text for computer science students requiring an
introduction to real-time software from an application viewpoint as opposed to an
operating system viewpoint. It assumes that the reader has some familiarity with at

13

14 Preface

- least one high-level programming language, with basic ideas about computer
hardware and an understanding of simple feedback controi concepts. It does not
require familiarity with control design techniques. Examples in the text are given
using Modula-2 and should be easily followed by anyone familiar with Pascal.

In Chapters 1 and 2 I introduce basic concepts relating to real-time systems and
their characteristics and provide an overview of computer control applications.
Chapter 3 provides a brief summary of the important hardware building blocks for
computers used for control. Chapter 4 introduces some of the practical problems
of implementing control algorithms. I use the simple and widely used PID
(Proportional + Integral + Derivative) controlier as an example and I explain its
operation in detail. The section of this chapter which uses z-transform notation and
deals with the implementation of controllers designed using discrete control
techniques can be omitted by readers who have no background in control systems.
In the final part of Chapter 4, ! introduce in general terms how to deal with systems
which involve more than just the control algorithm.

Chapter 5 on real-time languages.and Chapter 6 on operating systems and
concurrency provide basic information about two essential tools that will be
required by the real-time system builder. In Chapters 7, 8 and 9 I deal with the
methodologies that have been developed in recent years to help in the specification,
design and construction of real-time software and real-time systems. I concentrate
mainly on two methodologies, MASCOT and the Hatley & Pirbhai variant of the
Yourdon method. The standard methodologies provide very little guidance for the
actual implementation of the software design and in Chapter 10 I describe some of
the implementation problems and possible approaches to solving them. The final
chapter deals with the vital topic of building dependable software.

Many people assisted me in producing the first edition of this book: colleagues
in the Department of Automatic Control and Systems Engineering at the University
of Sheffield, in particular Steve White. In preparing this second edition I have
received much useful comment from Les Woolliscroft and from two reviewers.

Stuart Bennett
Sheffield, UK
April 1993

